FMEM: Functional Mixed Effects Models for Longitudinal Functional Responses
نویسندگان
چکیده
منابع مشابه
Functional Nonlinear Mixed Effects Models for Longitudinal Image Data
Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FNMEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual tra...
متن کاملFunctional mixed effects models.
In this article, a new class of functional models in which smoothing splines are used to model fixed effects as well as random effects is introduced. The linear mixed effects models are extended to nonparametric mixed effects models by introducing functional random effects, which are modeled as realizations of zero-mean stochastic processes. The fixed functional effects and the random functiona...
متن کاملTransition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses
In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...
متن کاملBeta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2019
ISSN: 1017-0405
DOI: 10.5705/ss.202017.0505